3.7.14 \(\int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [614]

3.7.14.1 Optimal result
3.7.14.2 Mathematica [A] (verified)
3.7.14.3 Rubi [A] (verified)
3.7.14.4 Maple [B] (verified)
3.7.14.5 Fricas [F]
3.7.14.6 Sympy [F]
3.7.14.7 Maxima [F]
3.7.14.8 Giac [F]
3.7.14.9 Mupad [F(-1)]

3.7.14.1 Optimal result

Integrand size = 25, antiderivative size = 277 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {8 (a-b) b \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}+\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a d}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

output
2/3*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+8/3*(a-b)*b*cot 
(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a 
-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x 
+c))/(a-b))^(1/2)/a/d+2/3*(a-3*b)*(a-b)*cot(d*x+c)*EllipticF((a+b*cos(d*x+ 
c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*( 
a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
 
3.7.14.2 Mathematica [A] (verified)

Time = 3.26 (sec) , antiderivative size = 256, normalized size of antiderivative = 0.92 \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\frac {2 (a+b \cos (c+d x)) (a+4 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right )} \left (-4 b (a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+\left (a^2+4 a b+3 b^2\right ) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-4 b (a+b \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 d \sqrt {a+b \cos (c+d x)}} \]

input
Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]
 
output
((2*(a + b*Cos[c + d*x])*(a + 4*b*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x] 
^(3/2) + 2*Sqrt[Cos[(c + d*x)/2]^2]*(-4*b*(a + b)*EllipticE[ArcSin[Tan[(c 
+ d*x)/2]], (-a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^ 
2)/(a + b)] + (a^2 + 4*a*b + 3*b^2)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (- 
a + b)/(a + b)]*Sqrt[((a + b*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - 
4*b*(a + b*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*Tan[(c + d* 
x)/2]))/(3*d*Sqrt[a + b*Cos[c + d*x]])
 
3.7.14.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3278, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3278

\(\displaystyle \frac {2}{3} \int \frac {4 a b+\left (a^2+3 b^2\right ) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {4 a b+\left (a^2+3 b^2\right ) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {4 a b+\left (a^2+3 b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {1}{3} \left (4 a b \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-3 b) (a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((a-3 b) (a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {1}{3} \left (4 a b \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {1}{3} \left (\frac {2 (a-3 b) (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {8 b (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}\right )+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

input
Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]
 
output
((8*(a - b)*b*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + 
 d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - 
 Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2* 
(a - 3*b)*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos 
[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a* 
(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/ 
3 + (2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2))
 

3.7.14.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3278
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Si 
n[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), 
 x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + 
d*Sin[e + f*x])^(n - 2)*Simp[c*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) 
+ (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] - d*(b*c - a 
*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] 
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1 
] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
3.7.14.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1449\) vs. \(2(251)=502\).

Time = 12.16 (sec) , antiderivative size = 1450, normalized size of antiderivative = 5.23

method result size
default \(\text {Expression too large to display}\) \(1450\)

input
int((a+cos(d*x+c)*b)^(3/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 
output
-2/3/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c)) 
/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*co 
s(d*x+c)^3+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d* 
x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a 
*b*cos(d*x+c)^3+3*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(( 
a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1 
/2)*b^2*cos(d*x+c)^3-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+c)*b) 
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b) 
)^(1/2))*a*b*cos(d*x+c)^3-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos(d*x+ 
c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/ 
(a+b))^(1/2))*b^2*cos(d*x+c)^3+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+cos 
(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-( 
a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2+8*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a 
-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos(d*x+c 
)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2+6*EllipticF(cot(d*x+c)-csc(d*x+c) 
,(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*(cos( 
d*x+c)/(1+cos(d*x+c)))^(1/2)*b^2*cos(d*x+c)^2-8*EllipticE(cot(d*x+c)-csc(d 
*x+c),(-(a-b)/(a+b))^(1/2))*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)* 
(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*a*b*cos(d*x+c)^2-8*(cos(d*x+c)/(1+cos(d* 
x+c)))^(1/2)*((a+cos(d*x+c)*b)/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE(co...
 
3.7.14.5 Fricas [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")
 
output
integral((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)
 
3.7.14.6 Sympy [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(5/2),x)
 
output
Integral((a + b*cos(c + d*x))**(3/2)/cos(c + d*x)**(5/2), x)
 
3.7.14.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)
 
3.7.14.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(5/2), x)
 
3.7.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

input
int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2),x)
 
output
int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2), x)